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1 Ensemble Gaussian Mixture Filter derivation

Consider the discrete time state evolution given by

Xn+1 = Xn + Vn (1)

where Xn ∈ RN , Vn ∼ N(0, RX), RX ∈ RN×N . At time 0, the state is assumed to be distributed according
to a L component Gaussian mixture as follows -

π(X0) =

L∑
l=1

αl,0πl(X0) (2)

The observations are available at each discrete time step n and are given by

Yn = h(Xn) +Wn (3)

where Yn,Wn ∈ RM , Wn ∼ N(0, RY ) and RY ∈ RM×M . When the observation map h() is linear i.e.
h(Xn) = HXn, H ∈ RM×N and the state evolution and observations (prior and the likelihood) are of the
above form, the posterior distribution at every time step n will also be a Gaussian mixture as follows -

π(Xn) =

L∑
l=1

αl,nπl,n(Xn) (4)

where πl,n(X) is the normal distribution N(µl,n, Pl,n).
A continuous time formulation of the data assimilation step (Bayes update) gives the following equations

(Reich, 2011) in artificial time s ∈ [0, 1]

dX

ds
= g(X, s) (5)

∇X · (πg) = π(S − Eπ[S]) (6)

where S(X,Yobs) = 1
2 (h(X)− Yobs)TR−1

Y (h(X)− Yobs) is the negative log-likelihood function. The random
vectors X(s = 0) and X(s = 1) are distributed according to the available prior and the required posterior
distribution. Solving for g(X, s) from the partial differential equation (PDE) in 6 provides a way to nu-
merically solve for X(s) using the ordinary differential equation (ODE) in 5. The solution to equation 6 is
not unique and we make appropriate choices/assumptions to solve for g(). For example, we can impose the
additional constraint that g is also the minimizer of the kinetic energy defined as

T (v) =
1

2

∫
vTMvdπ (7)

where M ∈ RN×N is a positive definite matrix. Under such constraint it can be shown that (Villani, 2003)
g = M−1∇Xψ where the potential ψ(X, s) is the solution of the elliptic PDE,

∇X · (πM−1∇Xψ) = π(S − Eπ[S]) (8)
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In the simple case of a single component Gaussian mixture (L = 1) where the prior is distributed as
N (µ, P ) and M−1 = P (s) it can be shown (Beregman and Reich, 2010a,b)

dX

ds
= −1

2
P (s)HTRY (HX(s) +Hµ(s)− 2Yobs) (9)

In case of a general L component Gaussian mixture we decompose the vector field g into two components
(Reich, 2011)

dX

ds
= g(X, s) = uA(X, s) + uB(X, s) (10)

and define

uA(X) =

L∑
l=1

αlπl(X)

π(X)
Pl∇XψA,l(X) (11)

uB(X) =

L∑
l=1

αlπl(X)

π(X)
Pl∇XψB,l(X) (12)

where we have dropped the s for simplicity. Substituting in equation 6 we get

∇X ·

(
L∑
l=1

αlπl(X)Pl∇XψA,l(X) +

L∑
l=1

αlπl(X)Pl∇XψB,l(X)

)
=

L∑
l=1

αlπl(X)(S(X)− Eπ[S]) (13)

=

L∑
l=1

αlπl(X)(S(X)− Eπl
[S]) +

L∑
l=1

αlπl(X)(Eπl
[S]− Eπ[S]) (14)

Thus we have,
∇X · {πl(X)Pl∇XψA,l(X)} = πl(X)(S(X)− Eπl

[S]) l = 1, 2...L (15)

and
∇X · {πl(X)Pl∇XψB,l(X)} = πl(X)(Eπl

[S]− Eπ[S]) l = 1, 2...L (16)

The equation 15 is similar to the case of single component Gaussian and hence from 9 and 11 we have the
solution,

uA(X, s) = −1

2

L∑
l=1

αl(s)πl(X, s)

π(X, s)
Pl(s)H

TR−1
Y [HX(s) +Hµl(s)− 2Yobs] (17)

The equation 16 needs to be solved to have the complete solution.

1.1 Scalar observation

In case of scalar observation Y ∈ R, the PDE can be reduced to a ODE and explicitly solved (Reich, 2011).
To derive this we assume the potential ψB,l to be of the following form

ψB,l(X) = ψ̂B,l(HX −Hµl) = ψ̂B,l(Y − Yl) (18)

where Y = HX and Yl = Hµl. Hence we have ∇XψB,l(X) = HT dψ̂B,l

dY (Y −Yl). Thus the PDE in equation 16
simplifies to the following ODE,

−(Y − Yl)
dψ̂B,l
dY

(Y − Yl) +HPlH
T d

2ψ̂B,l
dY 2

(Y − Yl) = Eπl
[S]− Eπ[S] (19)

Under the initial condition
dψ̂B,l

dY (Y − Yl)|Y=Yl
= 0 we can solve the above differential equation to obtain

dψ̂B,l
dY

(Y − Yl) =
1

2

Eπl
[S]− Eπ[S]

HPlHT

Erf((Y − Yl)/
√

2σ2
l )

πl(Y )
(20)
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with the PDF

πl(Y ) =
1√

2πσ2
l

exp

(
− (Y − Yl)2

2σ2
l

)
(21)

and σ2
l = HPlH

T . The standard error function is given by

Erf(Y ) =
2√
π

∫ Y

0

e−s
2

ds, Y > 0 (22)

Erf(Y ) = −Erf(−Y ), Y < 0 (23)

(24)

Thus the expression for uB(X, s) can be written as

uB(X, s) =
1

2

L∑
l=1

αl(s)πl(X, s)

π(X, s)
Pl(s)H

T Eπl
[S]− Eπ[S]

HPlHT

Erf((Y − Yl)/
√

2σ2
l )

πl(Y )
(25)

1.2 Vector observation

For the general case of vector observations the above technique does not reduce the PDE to ODE. Equation 16
can be expanded as

{∇Xπl(X)}·Pl∇XψB,l(X) + πl(X)∇X · {Pl∇XψB,l(X)} = πl(X)(Eπl
[S]− Eπ[S]) (26)

−πl(X)(X − µl)TP−1
l Pl∇XψB,l(X) + πl(X)∇X · {Pl∇XψB,l(X)} = πl(X)(Eπl

[S]− Eπ[S]) (27)

−(X − µl)T∇XψB,l(X) +∇X · {Pl∇XψB,l(X)} = Eπl
[S]− Eπ[S] (28)

This is a second order PDE with all the cross terms present in general. To simplify the problem we employ
the following transformation of variables. Let X = QlZ where Pl = QlQ

T
l is the Cholesky decomposition

and it always exists since Pl is a positive definite matrix. Matrix Ql is a lower triangular matrix with positive
diagonal entries and is invertible. Hence we have the relation Z = Q−1

l X and we define γl = Q−1
l µl. Let

the transformation induce the function φl(Z) = ψB,l(X)|X=QlZ in the variable Z and we have the following
relations

QTl ∇XψB,l(X) = ∇Zφl(Z) (29)

∇X · {Pl∇XψB,l(X)} = ∇2
Zφl(Z) (30)

Thus equation 28 becomes

−(Z − γl)T∇Zφl(Z) +∇2
Zφl(Z) = Eπl

[S]− Eπ[S] (31)

If vector Z = (z1, z2..zN ), then the above equation can be written as

−
N∑
i=1

(zi − γl,i)
∂φl
∂zi

+

N∑
i=1

∂2φl
∂z2i

= Eπl
[S]− Eπ[S] (32)

−
N∑
i=1

{(zi − γl,i)
∂φl
∂zi

+
∂2φl
∂z2i
} = Eπl

[S]− Eπ[S] =

N∑
i=1

Ci (33)

−(zi − γl,i)
∂φl
∂zi

+
∂2φl
∂z2i

= Ci i = 1, 2...N (34)

If a solution φl(Z) satisfies the system of PDE’s given in 34, it also satisfies the PDE in equation 33. It can
be seen that the individual equations in 34 are similar to equation 19 obtained in the scalar observation case.
If we assume that ∂φl

∂zi
= fi(zi) i.e. the individual partial derivatives of φ with respect to zi are functions of
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only the variable zi then we can solve the individual equations in the above system independently. With the
initial condition set to fi(zi = 0) = 0, we obtain the solution

fi(zi) =
∂φl
∂zi

=
1

2

Ci
πs(zi − γl,i)

(
Erf

[
(zi − γl,i)√

2

]
+ Erf

[
γl,i√

2

])
i = 1, 2...N (35)

where πs is the standard normal density function. Note that the solution depends on the choice of the initial
condition. A different choice, for Ex. fi(zi = γl,i) = 0 gives the solution

fi(zi) =
∂φl
∂zi

=
1

2

Ci
πs(zi − γl,i)

(
Erf

[
(zi − γl,i)√

2

])
i = 1, 2...N (36)

The final solution is completed from equation 12 by observing that ∇XψB,l(X) = (QTl )
−1∇Zφl(Z)|Z=Q−1

l X .

4


